Prospects for Natural Graphite Flake Markets

Tirupati Graphite
November 2018

Blevich@fastmarkets.com
Consultancy & Special Projects Director
+ 44 207 556 6020
Introduction

Bryan Levich, Consultancy & Special Projects Director
blevich@fastmarkets.com
+44 (0) 207 556 6020

- Tirupati Graphite plc has engaged Fastmarkets (formerly Metal Bulletin Group”), the independent research and consultancy arm of Fastmarkets, part of Euromoney Institutional Investor PLC, registered in the United Kingdom, to receive a study on the prospects of the natural graphite market.

- Feel free to contact me about any aspect of this report, or for any additional information requirements you may need to further support you and your teams.

Disclaimer

Prices and other information contained in this report have been obtained by us from various sources believed to be reliable. This information has not been independently verified by us. Those prices and price indices that are evaluated or calculated by us represent an approximate evaluation of current levels based upon dealings (if any) that may have been disclosed prior to publication to us. Such prices are collated through regular contact with producers, traders, dealers, brokers and purchasers although not all market segments may be contacted prior to the evaluation, calculation, or publication of any specific price or index. Actual transaction prices will reflect quantities, grades and qualities, credit terms, and many other parameters. The prices are in no sense comparable to the quoted prices of commodities in which a formal futures market exists. This document is for information purposes only. Whilst every effort has been made to ensure that the information is correct and that the views are sound, Fastmarkets cannot be made liable for any loss no matter how it may arise.
Built on a foundation of trust and reliability from the companies that have been brought together over the years, Fastmarkets will continue to grow and evolve with the markets. Continuing the history of rich and robust methodologies, deep connections in the market and revolutionizing technology solutions – we are committed to providing prices and market insights that allow you to master your markets.
“Our aim is to provide the world’s leading and most trusted price reporting, events & intelligence service for the markets that we serve”
Global Economic Outlook

- Global output expanding with all regions positive
- Remains below rate seen prior to financial crisis
- Asia is fastest-growing region
- Recovery in Latin America & CIS
- Acceleration in North America & Europe

- Chinese economy rallied in 2016/17 on stimulus
- Turned down in Q2 2018
- Outlook is for further weakness
- On-going shift to consumption from capital investment and reduction in debt risk
- Government could potentially re-stimulate

- 2018 may be peak
- Rising US interest rates in 2018
- End of QE in Europe and Japan
- Slowing Chinese growth
- Higher oil prices will choke consumption
The expansion is becoming less even, and risks to the outlook are mounting. The rate of expansion appears to have peaked in some major economies and growth has become less synchronized.

- Decade of monetary easing coming to an end
- Global debt now at higher levels than 2008
- Surging US economy leading to strong US dollar
- Rising risks of emerging market currency crisis due to excess offshore debt
- Tightening credit cycle in mature & emerging markets
- China slowing, but remains robust for now, but potential excess debt
- Trade war
Global natural flake graphite consumption trends

- Demand for natural graphite has historically been driven by the refractory, foundry and crucible sector.
- Refractory, foundry and crucible demand accounts for approximately 46% of global demand for natural graphite. The refractory industry drives the majority of this demand, whilst the foundry and crucible sectors consume smaller volumes of higher purity graphite products.

Graphite price historically driven by steel and industrial applications; now and in future more by battery & other high growth sector demand

- The battery sector is comparatively small but rapidly growing. In 2017, we estimate that the battery sector accounted for 13% of overall global consumption of natural graphite.
- As of 2017, less than 50% of graphite consumed was within batteries for EVs. This is forecast to change in the coming years.

Global expandable graphite market growth between 2017-2022

7% CAGR

Global batteries market growth between 2017-2022

32% CAGR

~1.2m tonnes in 2018
Demand for graphite is expected to experience an unprecedented growth elsewhere

Over 150 graphite applications

Basic graphite properties related to the applications:
• High electrical and thermal conductivity
• Insertion chemistry (intercalation)
• Chemical stability under acidic and alkaline conditions, inertness
• Lubricity
• Low weight
• Price / performance ratio

<table>
<thead>
<tr>
<th>Large Flake 20 – 80 mesh</th>
<th>Medium Flake 80 – 150 mesh</th>
<th>Small Flake 100 mesh to Micronised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaskets and Seals</td>
<td>Basic Refractory:</td>
<td>Paintings & Coatings</td>
</tr>
<tr>
<td>Flame Retardants</td>
<td>Magnesia Carbon</td>
<td>Pencils</td>
</tr>
<tr>
<td>Thermal sheets</td>
<td>Alumina Carbon</td>
<td>Dry & Ni MH Batteries</td>
</tr>
<tr>
<td>Fuel cells</td>
<td>Unshaped Refractory</td>
<td>Lubrication</td>
</tr>
<tr>
<td>Plugging Agents</td>
<td>Flame Retardants</td>
<td>Friction Materials</td>
</tr>
<tr>
<td>Expandable Graphite</td>
<td></td>
<td>Composites</td>
</tr>
<tr>
<td>Thermal Management</td>
<td></td>
<td>Li-ion Batteries</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aviation & Space Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nuclear Technology</td>
</tr>
</tbody>
</table>

Sectors = High growth, over 7% CAGR projected
Graphite’s value chain
Natural graphite demand by end-user applications out to 2027

Given the rapid increases in EV and storage facilities projected globally the global demand share of graphite in this sector will substantially rise from a 13% share in 2017 to 56% by 2027.

Graphite will keep it's position as main anode material for many years.

Total natural graphite consumption in 2017 reached over 1.1m tonnes...

... and will reach over to over 2.8m tonnes by 2027.
Demand for EV Lib batteries

84,000 tonnes

NATURAL SPHERICAL

- 39,719 (≈ 99,000 tonnes flake)
- China accounts ~45% of global graphite demand in lithium-ion batteries but will be >50% in 2025

SYNTHETIC

- 44,076
- 47:53 %

Disadvantages

- High Yield Loss
- Complicated Production

Due to performance and price issues, the ratio between natural and synthetic graphite is expected to be around 50:50 by 2022

Disadvantages

- More costly & energy-intensive vs Natural
- Lower Capacity vs Natural

2018

- 186,500 (≈ 466,000 tonnes flake)
- 100% supplied by China

2022

- 188,000
- 50:50 %

- 73% supplied by China, 15% Japan, 12% Other
New Natural Graphite Flake Projects

Significant increases in supply are expected from ex-China countries, such as Mozambique, Madagascar, Guinea and Brazil, with substantial new graphite production facilities planned. However, there are challenges:

- **Increasingly high market entry barriers**
 - High market entry barriers exist, particularly increasing in high growth, value-adding processing applications e.g. Lib, expandables, composites etc.
 - Syrah Resources’ Balama flake graphite mine in Mozambique that came online in October 2017. The company missed its production target for the first half of 2018 and has since reduced its output guidance for 2018 from 160,000 tonnes to 101,000-106,000 tonnes

- **Limited graphite projects in the pipeline (at least short-term)**
 - No new projects are expected to come on stream in 2019 except Tirupati Graphite in Q1 2019 with 9,000 tonnes and additional 18,000 tin Q4 2019 to total 27,000 tonnes

- **New projects take a long time to come to market**
 - Bringing a new mine into production takes time and requires significant technical knowledge to meeting the increasing complexities of consumer requirements. A unique skill set is required for value-added grades

 > 2.5 YEARS + >1 YEAR + 18-24 MONTHS +

 - **FINANCING**
 - **REACHING THE CORRECT SPECIFICATIONS**
 - **QUALIFICATION**

> 5 YEARS

Undoubtedly, there is a real market need for reliable and secure high quality graphite suppliers outside China there are supply-side challenges:

- Strong cost pressures from car OEM’s but no compromise in quality
- Material consistency & logistical issues mean lengthy output ramp up’s.
- Financing/mining lease/sovereign risk issues (particularly affecting African-based operations)
- Lengthy process to build trust and end-user customer base as product samples are insufficient
- Not all flake graphite deposits are created equal to meet required market demand

FINANCING

REACHING THE CORRECT SPECIFICATIONS

QUALIFICATION
Key supply-side market conclusions

- In 2016, China accounted for approximately 60% of natural graphite production, however, environmental restrictions have reduced graphite production. It will remain the largest producer of natural graphite, ~750,000 tpy, however, increases in supply from other countries will mean China’s dominance will reduce over the next 5 years. In the production of spherical graphite, for use in battery anodes, China will continue to control the majority of the processing and production. However, Chinese mines reportedly lack significant large and jumbo flake graphite therefore creating a market opportunity for any new large flake size producers.

- Any new project to come to market and survive will have to meet following key criteria in today’s demand environment
 - Low stripping ratio
 - Resources / reserves for > 10 years (> 10 Mt)
 - High yield of highest-quality marketable products (> 94% Carbon, >75 micron)
 - Favourable jurisdiction and logistics
 - Low operating costs
 - Short timeframe to production (< 2 years)
 - Offtake (sales) agreements in place
 - Experienced management with strong understanding of graphite markets

- This means not all the ~1.3m tpy planned new graphite supply projects will come to fruition. We expect start-up’s to take up more of a modular approach to supply increases over the forecast period accordingly.

- We expect significant global production deficits emerging particularly in large flake and battery application areas, thereby providing upward pressure on market prices.
Graphite Price Outlook
Price analysis & forecasts

Flake graphite prices are dictated by three factors:

Carbon purity:
Flake graphite concentrate with a greater carbon purity receive a premium price because they require less processing to remove disruptive impurities. A carbon content of 90% C and above is generally required in all refractory, foundry and crucible applications. The most common grade used in refractory applications is around 92% C, but some major producers will demand a purity of up to 96% C to ensure the integrity of their products. The price of grades <94% C increase at an accelerated rate as the carbon content increases, due to the greater cost involved in refining the material towards the higher purities required for high-tech and more specialist applications.

Mesh size:
Similar to high-carbon purity grades, larger mesh sizes demand a premium. Tighter supply conditions for these grades dictate that prices escalate rapidly at mesh sizes larger than +80 mesh. Larger mesh size also improves the material’s conductivity for higher-value applications.

The rise of offtake agreements and more sophisticated customer requirements for added value processing and applications
Natural Flake Price Forecasts by size/purity

- Strong CAGR price growth in high purity and large flake distribution particularly.
- Synthetic graphite commands a significant premium to natural flake graphite, given it’s a man-made, environmentally damaging and high energy intensive product.
- This will act as a significant advantage to natural flake consumption levels and help support natural flake prices over the forecast period.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+32Mesh</td>
<td></td>
<td>92</td>
<td>1,932</td>
<td>2,070</td>
<td>2,174</td>
<td>2,282</td>
<td>2,378</td>
<td>2,478</td>
<td>2,582</td>
<td>2,690</td>
<td>2,803</td>
</tr>
<tr>
<td>+32Mesh</td>
<td></td>
<td>94</td>
<td>2,100</td>
<td>2,210</td>
<td>2,323</td>
<td>2,441</td>
<td>2,551</td>
<td>2,666</td>
<td>2,786</td>
<td>2,911</td>
<td>3,042</td>
</tr>
<tr>
<td>+32Mesh</td>
<td></td>
<td>95</td>
<td>2,150</td>
<td>2,270</td>
<td>2,456</td>
<td>2,551</td>
<td>2,699</td>
<td>2,855</td>
<td>3,021</td>
<td>3,156</td>
<td>3,381</td>
</tr>
<tr>
<td>+32Mesh</td>
<td></td>
<td>96</td>
<td>2,200</td>
<td>2,360</td>
<td>2,549</td>
<td>2,753</td>
<td>2,962</td>
<td>3,187</td>
<td>3,429</td>
<td>3,600</td>
<td>3,970</td>
</tr>
<tr>
<td>+32Mesh</td>
<td></td>
<td>97</td>
<td>2,350</td>
<td>2,470</td>
<td>2,668</td>
<td>2,881</td>
<td>3,111</td>
<td>3,360</td>
<td>3,629</td>
<td>3,920</td>
<td>4,233</td>
</tr>
<tr>
<td>+48Mesh</td>
<td></td>
<td>92</td>
<td>1,564</td>
<td>1,670</td>
<td>1,770</td>
<td>1,876</td>
<td>1,980</td>
<td>2,088</td>
<td>2,203</td>
<td>2,325</td>
<td>2,452</td>
</tr>
<tr>
<td>+48Mesh</td>
<td></td>
<td>94</td>
<td>1,700</td>
<td>1,810</td>
<td>1,919</td>
<td>2,034</td>
<td>2,146</td>
<td>2,264</td>
<td>2,388</td>
<td>2,519</td>
<td>2,658</td>
</tr>
<tr>
<td>+48Mesh</td>
<td></td>
<td>95</td>
<td>1,750</td>
<td>1,855</td>
<td>1,985</td>
<td>2,124</td>
<td>2,351</td>
<td>2,538</td>
<td>2,529</td>
<td>2,681</td>
<td>2,842</td>
</tr>
<tr>
<td>+48Mesh</td>
<td></td>
<td>96</td>
<td>1,800</td>
<td>1,915</td>
<td>2,049</td>
<td>2,192</td>
<td>2,346</td>
<td>2,510</td>
<td>2,686</td>
<td>2,874</td>
<td>3,075</td>
</tr>
<tr>
<td>+48Mesh</td>
<td></td>
<td>97</td>
<td>1,850</td>
<td>1,970</td>
<td>2,128</td>
<td>2,298</td>
<td>2,482</td>
<td>2,680</td>
<td>2,895</td>
<td>3,126</td>
<td>3,376</td>
</tr>
<tr>
<td>+80Mesh</td>
<td></td>
<td>92</td>
<td>741</td>
<td>900</td>
<td>937</td>
<td>955</td>
<td>983</td>
<td>1,013</td>
<td>1,043</td>
<td>1,075</td>
<td>1,170</td>
</tr>
<tr>
<td>+80Mesh</td>
<td></td>
<td>94</td>
<td>790</td>
<td>960</td>
<td>1,008</td>
<td>1,058</td>
<td>1,111</td>
<td>1,167</td>
<td>1,225</td>
<td>1,286</td>
<td>1,351</td>
</tr>
<tr>
<td>+80Mesh</td>
<td></td>
<td>95</td>
<td>820</td>
<td>1,030</td>
<td>1,102</td>
<td>1,179</td>
<td>1,262</td>
<td>1,350</td>
<td>1,445</td>
<td>1,546</td>
<td>1,654</td>
</tr>
<tr>
<td>+80Mesh</td>
<td></td>
<td>96</td>
<td>880</td>
<td>1,150</td>
<td>1,242</td>
<td>1,341</td>
<td>1,449</td>
<td>1,565</td>
<td>1,690</td>
<td>1,825</td>
<td>1,971</td>
</tr>
<tr>
<td>+80Mesh</td>
<td></td>
<td>97</td>
<td>900</td>
<td>1,250</td>
<td>1,363</td>
<td>1,485</td>
<td>1,619</td>
<td>1,764</td>
<td>1,923</td>
<td>2,096</td>
<td>2,285</td>
</tr>
<tr>
<td>+100 -80Mesh</td>
<td></td>
<td>92</td>
<td>808</td>
<td>850</td>
<td>893</td>
<td>901</td>
<td>906</td>
<td>910</td>
<td>915</td>
<td>920</td>
<td>924</td>
</tr>
<tr>
<td>+100 -80Mesh</td>
<td></td>
<td>94</td>
<td>878</td>
<td>920</td>
<td>929</td>
<td>938</td>
<td>943</td>
<td>948</td>
<td>953</td>
<td>957</td>
<td>962</td>
</tr>
<tr>
<td>+100 -80Mesh</td>
<td></td>
<td>95</td>
<td>976</td>
<td>960</td>
<td>979</td>
<td>999</td>
<td>1,009</td>
<td>1,019</td>
<td>1,029</td>
<td>1,039</td>
<td>1,050</td>
</tr>
<tr>
<td>+100 -80Mesh</td>
<td></td>
<td>96</td>
<td>969</td>
<td>970</td>
<td>999</td>
<td>1,029</td>
<td>1,060</td>
<td>1,086</td>
<td>1,114</td>
<td>1,141</td>
<td>1,170</td>
</tr>
<tr>
<td>+100 -80Mesh</td>
<td></td>
<td>97</td>
<td>1,040</td>
<td>1,065</td>
<td>1,097</td>
<td>1,130</td>
<td>1,164</td>
<td>1,193</td>
<td>1,223</td>
<td>1,253</td>
<td>1,285</td>
</tr>
<tr>
<td>+200Mesh</td>
<td></td>
<td>92</td>
<td>745</td>
<td>800</td>
<td>816</td>
<td>832</td>
<td>849</td>
<td>866</td>
<td>883</td>
<td>901</td>
<td>919</td>
</tr>
<tr>
<td>+200Mesh</td>
<td></td>
<td>94</td>
<td>810</td>
<td>830</td>
<td>847</td>
<td>864</td>
<td>881</td>
<td>898</td>
<td>916</td>
<td>935</td>
<td>953</td>
</tr>
<tr>
<td>+200Mesh</td>
<td></td>
<td>95</td>
<td>803</td>
<td>845</td>
<td>862</td>
<td>879</td>
<td>897</td>
<td>915</td>
<td>933</td>
<td>952</td>
<td>971</td>
</tr>
<tr>
<td>+200Mesh</td>
<td></td>
<td>96</td>
<td>847</td>
<td>870</td>
<td>887</td>
<td>905</td>
<td>923</td>
<td>942</td>
<td>961</td>
<td>980</td>
<td>999</td>
</tr>
<tr>
<td>+200Mesh</td>
<td></td>
<td>97</td>
<td>950</td>
<td>970</td>
<td>989</td>
<td>1,009</td>
<td>1,029</td>
<td>1,050</td>
<td>1,071</td>
<td>1,092</td>
<td>1,114</td>
</tr>
<tr>
<td>-200Mesh</td>
<td></td>
<td>92</td>
<td>386</td>
<td>550</td>
<td>532</td>
<td>510</td>
<td>485</td>
<td>455</td>
<td>435</td>
<td>415</td>
<td>400</td>
</tr>
<tr>
<td>-200Mesh</td>
<td></td>
<td>94</td>
<td>420</td>
<td>570</td>
<td>576</td>
<td>551</td>
<td>522</td>
<td>489</td>
<td>463</td>
<td>443</td>
<td>429</td>
</tr>
<tr>
<td>-200Mesh</td>
<td></td>
<td>95</td>
<td>400</td>
<td>470</td>
<td>549</td>
<td>520</td>
<td>498</td>
<td>482</td>
<td>467</td>
<td>447</td>
<td>437</td>
</tr>
<tr>
<td>-200Mesh</td>
<td></td>
<td>96</td>
<td>450</td>
<td>570</td>
<td>641</td>
<td>634</td>
<td>621</td>
<td>588</td>
<td>576</td>
<td>552</td>
<td>534</td>
</tr>
<tr>
<td>-200Mesh</td>
<td></td>
<td>97</td>
<td>500</td>
<td>635</td>
<td>692</td>
<td>685</td>
<td>670</td>
<td>635</td>
<td>622</td>
<td>596</td>
<td>577</td>
</tr>
</tbody>
</table>